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Abstract. How are personal interests related to the communities in large social
networks? In order to answer this kind of question, we introduce structural cor-
relation pattern mining, which is the identification of interesting associations
between vertex attributes and dense subgraphs. We present a model and algo-
rithms that explore search, pruning, sampling and parallelization strategies to
solve this problem for large graphs. Results show that structural correlation
pattern mining enables the discovery of relevant patterns in real-life datasets.

1. Introduction
Graphs, or networks, have been established as a powerful theoretical framework for mod-
eling interactions in various scenarios. The availability of real graphs in the last years
motivated a broad spectrum of research on the properties of such graphs. As one of these
efforts, this work extends the graph analysis framework by studying correlations between
vertex attributes and dense subgraphs in attributed graphs [Silva 2011].

Attributes play an important role in several real graphs as means to describe prop-
erties of vertices. In social networks, attributes are useful to represent personal charac-
teristics (e.g., interests). Moreover, it is known that many graphs present dense subgraph
organization (a.k.a. community structure) [Fortunato 2010]. Dense subgraphs are sets
of vertices with strong connections among themselves (e.g., communities in social net-
works). Both attributes and dense subgraphs contain meaningful information in other im-
portant graphs, such as those extracted from citations, biological systems, and the Web.
However, existing techniques are not able to extract knowledge regarding the correlation
between attributes and dense subgraphs, which is the main motivation for this work.

Two vertices are correlated in terms of an attribute if they are connected and share
this attribute [Anagnostopoulos et al. 2008]. The novelty of this work comes from ex-
tending the concept of correlation to subgraphs. A subgraph is said to be structurally
correlated w.r.t. a set of attributes if it is dense and all of its vertices share these attributes.

Figure 1 illustrates structural correlation pattern mining. Vertex attributes and in-
teractions are shown in Table 1(a) and Figure 1(b), respectively. Figures 1(c) and 1(d) are
examples of dense subgraphs, ({A},{3,4,5,6}) and ({A,B},{6,7,8,9,10,11}) are examples
of patterns. We say that the structural correlation of A is 0.82 because 82% of the vertices
that have A are part of a pattern that has A as attribute. If the attributes and interactions in
this example represent personal interests and friendship, respectively, a structural corre-
lation pattern describes a community that shares a particular set of interests (e.g., sports,
music). Moreover, structural correlation is a measure of the association between interests
and the community structure in a social network, which is relevant for viral marketing.
Structural correlation patterns may also represent relationships between gene expression
and modules in gene networks, keywords and link structure in the Web, etc. At a large
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Figure 1. Structural correlation pattern mining (illustrative example)

scale, such patterns help us in the discovery of underlying processes that involve attributes
and structure taking place in real large attributed graphs.

The analysis of relationships between attributes and subgraphs is a challenging
problem. It requires a powerful model in order to enable the identification of relevant
associations between these two types of information. Also, the number of possibilities
in which attributes and subgraphs can be correlated in large graphs imposes a significant
performance requirement. In Computer Science, the research area dedicated to the extrac-
tion of knowledge from large databases is called data mining. In particular, the sub-area of
data mining focused on graphs is called graph mining [Chakrabarti and Faloutsos 2006].

We model the correlation between attributes and dense subgraphs using frequent
itemsets and quasi-cliques, two previously defined patterns in data mining. Based on this
model, we formulate a statistical significance measure for structural correlation that gives
how unexpected it is to find a given correlation in a graph. Furthermore, we design a
family of algorithms that apply search, pruning, sampling and parallelization techniques
as means to make structural correlation pattern mining applicable to real large databases.

The main contributions of this work are: (1) introducing the problem of correlating
attributes and dense subgraphs, (2) modeling it as a graph mining problem, (3) designing
efficient algorithms for this problem, and (4) evaluating the relevance of the proposed
problem and algorithms in real scenarios [Silva 2011, Silva et al. 2010, Silva et al. 2012].

2. Structural Correlation Pattern Mining
This section describes the structural correlation pattern mining and some solutions for it.

2.1. Definitions

Definition 1 (Attributed graph) An attributed graph is a tuple G = (V , E ,A,F) where
V is the set of vertices, E is the set of edges, A = {a1, a2, . . . an} is the set of attributes,
and F : V → P (A) returns the set of attributes of a vertex. P is the power set function.

Definition 2 (Attribute set) An attribute set S is a subset of A. We denote by V(S) ⊆ V
the vertex set induced by S (i.e., V(S) = {vi ∈ V|S ⊆ F(vi)}) and by E(S) ⊆ E the
edge set induced by S (i.e., E(S) = {(vi, vj) ∈ E|vi, vj ∈ V(S)}). The graph G(S), is
the pair (V(S), E(S)). A support function σ gives the frequency of an attribute set in the
graph (σ(S) = |V(S)|), i.e., the number of vertices that contain S.



pattern size γ σ ε
({A},{6, 7, 8, 9, 10, 11}) 6 0.60 11 0.82

({A},{3, 4, 5, 6}) 4 1 11 0.82
({A},{3, 4, 6, 7}) 4 0.67 11 0.82
({A},{3, 5, 6, 7}) 4 0.67 11 0.82
({A},{3, 6, 7, 8}) 4 0.67 11 0.82

({B},{6, 7, 8, 9, 10, 11}) 6 0.60 6 1.0
({A,B},{6, 7, 8, 9, 10, 11}) 6 0.60 6 1.0

Figure 2. Example output: For each pattern
(S,Q), we show its size, density (γ), support
(σ), and structural correlation (ε).

Require: G(S), γmin, min size
Ensure: Q
Q ← ∅
X ← ∅
candExts(X)← V(S)
Apply vertex pruning in candExts(X)
qcCands← {(X, candExts(X))}
while qcCands 6= ∅ do

q ← qcCands.get()
Apply candidate quasi-clique pruning in q
if q.X ∪ q.candExts(X) is a quasi-clique

then
Q ← Q∪ {q.X ∪ q.candExts(X)}

else
if q.X is a quasi-clique then
Q ← Q∪ {q.X}

insert extensions of q into qcCands

Figure 3. Structural Corre-
lation Algorithm

Definition 3 (Quasi-clique) Given a minimum density γmin (0 < γmin ≤ 1) and
min size, a quasi-clique is a maximal vertex set Q such that, for each v ∈ Q, the degree
of v in Q is at least dγmin.(|Q| − 1)e and |Q| ≥ min size [Liu and Wong 2008].

Definition 4 (Structural correlation pattern). A structural correlation pattern is a pair
(S,Q), where S ⊆ A and Q ⊆ V(S) is a quasi-clique, given γmin and min size.

Definition 5 (Structural correlation function ε) Given an attribute set S, the structural
correlation of S, ε(S), is given as the ratio between |KS|, where KS is the set of vertices
in quasi-cliques in G(S), and σ(S), which is the support of S.

2.2. The structural correlation pattern mining problem
Definition 6 (Structural correlation pattern mining problem). Given an attributed
graph G(V , E ,A,F), a minimum support threshold σmin, a minimum quasi-clique den-
sity γmin and size min size, and a minimum structural correlation εmin, the problem
consists of identifying the set of structural correlation patterns (S,Q) from G, such that
σ(S) ≥ σmin, and ε(S) ≥ εmin.

Figure 2 shows the patterns from the graph presented in Figure 1 when the param-
eters σmin, γmin, min size and εmin are set to 3, 0.6, 4, and 0.5, respectively.

2.3. Statistical significance of structural correlation
Structural correlation is a measure of the association between attribute sets and dense
subgraphs. However, given a structural correlation value, how interesting/unexpected is
it? We answer this question by formulating an upper bound on the expected structural
correlation in a hypothetical scenario where such correlation is random.

Theorem 1 (Upper bound on the expected structural correlation) Given the parameters
γmin and min size, the structural correlation of an attribute set S is upper bounded by:
max-εexp(σ(S)) =

∑m
α=z p(α).

∑α
β=z F (α, β, ρ), where z = dγmin.(min size − 1)e, m

is the maximum degree of a vertex from G, and p is the degree distribution of G. The
values of ρ and F are defined as follows: ρ = σ(S)−1

|V|−1 , F (α, β, ρ) =
(
α
β

)
.ρβ.(1− ρ)α−β .

Proof. Omitted due to space constraints, please see [Silva 2011].

Definition 7 (Normalized structural correlation δ) The normalized structural correla-
tion of an attribute set S is the ratio between the actual (ε) and the upper bound on the
expected (max-ε) structural correlation.



2.4. SCPM: A family of algorithms for structural correlation pattern mining

The design of efficient algorithms for structural correlation pattern mining is one of the
contributions of this work. We combine existing and new strategies into a family of al-
gorithms called SCPM as means to solve this problem for large graphs. Figure 3 shows
a general structural correlation algorithm, which extends and prunes quasi-clique candi-
dates until the complete set of quasi-cliques is discovered. In the remaining of this section,
we present several computational strategies based on this general algorithm.

Search: Given an attribute set S, its structural coverage K(S) can be computed using
the set of quasi-cliques Q (Figure 3). However, candidate patterns can be traversed in
different fashions. In particular, in case qcCands is a queue or a stack, patterns are
traversed in BFS or DFS order, respectively. While BFS represents a focus on a large
number of small quasi-cliques, DFS tends to find a small number of large ones. We found
that DFS achieves better performance in structural correlation pattern mining.

Pruning: We propose several strategies to prune candidate patterns in structural corre-
lation pattern mining. Candidates can be pruned based on: (1) a level-wise enumeration
of attribute sets, (2) minimum structural correlation εmin, and (3) minimum normalized
structural correlation δmin. Also, by reducing the number of patterns discovered to the
top-k most relevant ones, in terms of size and density, we are able to cut down the number
of candidate patterns to be checked in the computation of the structural correlation.

Sampling: Instead of checking whether each vertex in G(S) is part of a quasi-clique, as
shown in Figure 3, it is possible to estimate K(S) using random sampling. The margin of
error associated with a sample can also be estimated using standard statistical techniques.

Parallelization: Structural correlation patterns may be mined in parallel. In this work,
we propose the use of a work pool model as means to exploit multiple processing units in
structural correlation pattern mining.

3. Experimental Results
In this section, we summarize the main experimental results of this work.

Datasets: We apply structural correlation pattern mining in the analysis of 3 real datasets:
a collaboration, a music, and a citation network. Table 1 describes the datasets.

name vertex edge att. S Q |V| |E| |A|
DBLP author co-authorship term topic community 108,030 276,658 23,285

LastFm user friendship artist taste community 272,412 350,239 3,929,101
Citeseer paper citation term topic related work 294,104 782,147 206,430

Table 1. Dataset descriptions and statistics

S σ ε
grid applic 840 0.26
grid servic 599 0.23

environ grid 525 0.21
queri xml 615 0.21

(a) structural correlation

S σ ε δ
search rank 420 0.19 635,349
perform file 404 0.14 555,067

structur index 404 0.14 555,067
search mine 413 0.14 490,932
(b) normalized str. correlation

name search par. samp.
SCPM-DFS DFS no no
SCPM-BFS BFS no no

SCPM-DFS-SAMP DFS no yes
SCPM-BFS-SAMP BFS no yes
PAR-SCPM-DFS DFS yes no

(c) Variations of SCPM

Figure 4. Top attribute sets from DBLP and variations of SCPM evaluated



Case studies: Figures 4(a) and 4(b) show the top-4 attribute sets of size at least 2 in terms
of ε and δ from the DBLP dataset (σmin=10,γmin=0.5,min size=400). Top ε attribute
sets are more frequent and general than the top δ. On the other hand, top δ attribute
sets can be easily associated to research topics that emerge from collaboration due to the
use of statistical significance in structural correlation pattern mining. Figure 5 presents
examples of graphs (G(S)) induced by attribute sets and structural correlation patterns
discovered from the three datasets. Vertices in dense subgraphs are indicated (in red).
Structural correlation patterns depict the dense subgraph structure associated to attribute
sets. In Figure 5(b), for instance, it is possible to identify several communities involving
people who listen to Sufjan Stevens and Wilco. Such information is very useful in the
design of effective viral campaigns in last.fm. Figure 5(d) shows a structural correlation
pattern that describes an intense collaboration between 37 researchers who work on topics
related to systems performance. Further analysis has shown that these collaborations are
a consequence of two research projects with several overlapping members. This kind of
pattern is of particular interest to organizations (e.g., companies) in the search for teams
of experts in a given field. Neither attribute or dense subgraph information in isolation
could enable the discovery of the patterns that we have discussed here.

(a) DBLP:{search, rank} (b) LastFm:{SStevens,Wilco} (c) CiteSeer:{node, network}

(d) DBLP:{perform, system} (e) LastFm:{VMorrison} (f) CiteSeer:{perform, system}

Figure 5. Examples of induced graphs (a,b,c) and patterns (d,e,f)

Performance evaluation: Figure 6 shows the performance of 4 versions of SCPM w.r.t.
some of its parameters using data from DBLP. The versions are described in Table 4(c) in
terms of the search strategy (search) used and whether parallelization (par.) and sampling
(samp.) are applied. SCPM-DFS outperforms SCPM-BFS and is up to 100 times faster
than the Naive algorithm, which is a direct application of a frequent itemset and a quasi-
clique mining algorithm. Moreover, the pruning strategy based on ε leads to performance
improvements. Figure 6(b) shows that sampling (SCPM-DFS-SAMP and SCPM-BFS-
SAMP) enables performance gains up to 70% over SCPM-DFS with 1% margin of error



(θmax). Scalability results (see Figure 6(c)) show that PAR-SCPM-DFS is up to 6 times
faster than SCPM-DFS when 8 cores are available.
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Figure 6. Performance evaluation

4. Concluding Remarks
We summarized the main contributions of our research on models and algorithms for as-
sessing the correlation between vertex attributes and dense subgraphs in attributed graphs.
We formalized this problem as the structural correlation pattern mining problem and pre-
sented several strategies in order to enable its application to large graphs. After an exten-
sive evaluation of a family of algorithms (SCPM) for this problem, we showed that the
proposed model and strategies not only provide relevant knowledge, but also are able to
process large databases (with hundreds of thousands of vertices, edges and attributes). In
particular, structural correlation patterns can be mined efficiently using DFS, vertex and
attribute set pruning, restriction to the top-k patterns, sampling, and parallelization.

As future work, we will apply SCPM to relational learning, social network anal-
ysis, and summarization tasks. Due to the lack of space, we omitted some results of this
research (please see [Silva et al. 2010, Silva et al. 2012, Silva 2011]).
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